Part I Motivation and Introduction |
|
|
|
3 | (64) |
|
|
3 | (4) |
|
|
7 | (1) |
|
1.3 Linear Programming: Complicating Constraints |
|
|
8 | (20) |
|
1.3.1 Transnational Soda Company |
|
|
8 | (4) |
|
1.3.2 Stochastic Hydro Scheduling |
|
|
12 | (7) |
|
1.3.3 River Basin Operation |
|
|
19 | (4) |
|
1.3.4 Energy Production Model |
|
|
23 | (5) |
|
1.4 Linear Programming: Complicating Variables |
|
|
28 | (11) |
|
1.4.1 Two-Year Coal and Gas Procurement |
|
|
28 | (4) |
|
1.4.2 Capacity Expansion Planning |
|
|
32 | (4) |
|
1.4.3 The Water Supply System |
|
|
36 | (3) |
|
1.5 Nonlinear Programming: Complicating Constraints |
|
|
39 | (14) |
|
1.5.1 Production Scheduling |
|
|
39 | (3) |
|
1.5.2 Operation of a Multiarea Electricity Network |
|
|
42 | (3) |
|
|
45 | (3) |
|
1.5.4 Reliability-based Optimization of a Rubblemound Breakwater |
|
|
48 | (5) |
|
1.6 Nonlinear Programming: Complicating Variables |
|
|
53 | (2) |
|
1.6.1 Capacity Expansion Planning: Revisited |
|
|
53 | (2) |
|
1.7 Mixed-Integer Programming: Complicating Constraints |
|
|
55 | (2) |
|
|
55 | (2) |
|
1.8 Mixed-Integer Programming: Complicating Variables |
|
|
57 | (4) |
|
1.8.1 Capacity Expansion Planning: Revisited 2 |
|
|
57 | (3) |
|
1.8.2 The Water Supply System: Revisited |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (5) |
Part II Decomposition Techniques |
|
|
2 Linear Programming: Complicating Constraints |
|
|
67 | (40) |
|
|
67 | (3) |
|
2.2 Complicating Constraints: Problem Structure |
|
|
70 | (3) |
|
|
73 | (4) |
|
2.4 The Dantzig-Wolfe Decomposition Algorithm |
|
|
77 | (22) |
|
|
77 | (10) |
|
|
87 | (1) |
|
2.4.3 Issues Related to the Master Problem |
|
|
88 | (5) |
|
2.4.4 Alternative Formulation of the Master Problem |
|
|
93 | (6) |
|
|
99 | (1) |
|
|
100 | (7) |
|
3 Linear Programming: Complicating Variables |
|
|
107 | (34) |
|
|
107 | (3) |
|
3.2 Complicating Variables: Problem Structure |
|
|
110 | (1) |
|
3.3 Benders Decomposition |
|
|
111 | (24) |
|
|
111 | (5) |
|
|
116 | (1) |
|
3.3.3 The Benders Decomposition Algorithm |
|
|
116 | (12) |
|
3.3.4 Subproblem Infeasibility |
|
|
128 | (7) |
|
|
135 | (1) |
|
|
136 | (5) |
|
|
141 | (46) |
|
|
141 | (1) |
|
4.2 Karush—Kuhn—Tucker First- and Second-Order Optimality Conditions |
|
|
142 | (7) |
|
4.2.1 Equality Constraints and Newton Algorithm |
|
|
147 | (2) |
|
4.3 Duality in Linear Programming |
|
|
149 | (12) |
|
4.3.1 Obtaining the Dual Problem from a Primal Problem in Standard Form |
|
|
150 | (1) |
|
4.3.2 Obtaining the Dual Problem |
|
|
151 | (3) |
|
|
154 | (7) |
|
4.4 Duality in Nonlinear Programming |
|
|
161 | (15) |
|
4.5 Illustration of Duality and Separability |
|
|
176 | (5) |
|
|
181 | (1) |
|
|
181 | (6) |
|
5 Decomposition in Nonlinear Programming |
|
|
187 | (56) |
|
|
187 | (1) |
|
5.2 Complicating Constraints |
|
|
187 | (1) |
|
5.3 Lagrangian Relaxation |
|
|
187 | (18) |
|
|
188 | (6) |
|
|
194 | (1) |
|
|
195 | (1) |
|
5.3.4 Multiplier Updating |
|
|
195 | (10) |
|
5.4 Augmented Lagrangian Decomposition |
|
|
205 | (5) |
|
|
205 | (2) |
|
|
207 | (1) |
|
|
208 | (1) |
|
5.4.4 Multiplier Updating |
|
|
208 | (1) |
|
5.4.5 Penalty Parameter Updating |
|
|
208 | (2) |
|
5.5 Optimality Condition Decomposition (OCD) |
|
|
210 | (13) |
|
5.5.1 Motivation: Modified Lagrangian Relaxation |
|
|
211 | (2) |
|
5.5.2 Decomposition Structure |
|
|
213 | (1) |
|
|
214 | (2) |
|
|
216 | (1) |
|
5.5.5 Convergence Properties |
|
|
217 | (6) |
|
5.6 Complicating Variables |
|
|
223 | (10) |
|
|
223 | (1) |
|
5.6.2 Benders Decomposition |
|
|
223 | (2) |
|
|
225 | (8) |
|
5.7 From Lagrangian Relaxation to Dantzig-Wolfe Decomposition |
|
|
233 | (5) |
|
5.7.1 Lagrangian Relaxation in LP |
|
|
234 | (2) |
|
5.7.2 Dantzig-Wolfe from Lagrangian Relaxation |
|
|
236 | (2) |
|
|
238 | (1) |
|
|
239 | (4) |
|
6 Decomposition in Mixed-Integer Programming |
|
|
243 | (28) |
|
|
243 | (1) |
|
6.2 Mixed-Integer Linear Programming |
|
|
244 | (7) |
|
6.2.1 The Benders Decomposition for MILP Problems |
|
|
245 | (5) |
|
|
250 | (1) |
|
6.3 Mixed-Integer Nonlinear Programming |
|
|
251 | (1) |
|
6.4 Complicating Variables: Nonlinear Case |
|
|
251 | (6) |
|
6.4.1 The Benders Decomposition |
|
|
251 | (2) |
|
6.4.2 Subproblem Infeasibility |
|
|
253 | (4) |
|
|
257 | (1) |
|
6.5 Complicating Constraints: Nonlinear Case |
|
|
257 | (7) |
|
6.5.1 Outer Linearization Algorithm |
|
|
258 | (6) |
|
|
264 | (1) |
|
|
264 | (1) |
|
|
264 | (7) |
|
7 Other Decomposition Techniques |
|
|
271 | (32) |
|
7.1 Bilevel Decomposition |
|
|
271 | (9) |
|
7.1.1 A Relaxation Method |
|
|
272 | (5) |
|
7.1.2 The Cutting Hyperplane Method |
|
|
277 | (3) |
|
|
280 | (2) |
|
|
282 | (3) |
|
7.4 Coordinate Descent Decomposition |
|
|
285 | (12) |
|
7.4.1 Banded Matrix Structure Problems |
|
|
287 | (10) |
|
|
297 | (6) |
Part III Local Sensitivity Analysis |
|
|
8 Local Sensitivity Analysis |
|
|
303 | (46) |
|
|
303 | (1) |
|
8.2 Statement of the Problem |
|
|
304 | (1) |
|
8.3 Sensitivities Based on Duality Theory |
|
|
305 | (10) |
|
8.3.1 Karush—Kuhn—Tucker Conditions |
|
|
305 | (2) |
|
8.3.2 Obtaining the Set of All Dual Variable Values |
|
|
307 | (1) |
|
8.3.3 Some Sensitivities of the Objective Function |
|
|
308 | (2) |
|
8.3.4 A Practical Method for the Sensitivities of the Objective Function |
|
|
310 | (1) |
|
8.3.5 A General Formula for the Sensitivities of the Objective Function |
|
|
310 | (5) |
|
8.4 A General Method for Obtaining All Sensitivities |
|
|
315 | (6) |
|
8.4.1 Determining the Set of All Feasible Perturbations |
|
|
317 | (1) |
|
8.4.2 Discussion of Directional and Partial Derivatives |
|
|
318 | (2) |
|
8.4.3 Determining Directional Derivatives if They Exist |
|
|
320 | (1) |
|
8.4.4 Partial Derivatives |
|
|
320 | (1) |
|
8.4.5 Obtaining All Sensitivities at Once |
|
|
321 | (1) |
|
|
321 | (18) |
|
|
321 | (2) |
|
8.5.2 Same Active Constraints |
|
|
323 | (3) |
|
|
326 | (13) |
|
8.6 Sensitivities of Active Constraints |
|
|
339 | (2) |
|
|
341 | (8) |
Part IV Applications |
|
|
|
349 | (48) |
|
|
349 | (12) |
|
9.1.1 Method 1: Updating Safety Factor Bounds |
|
|
355 | (4) |
|
9.1.2 Method 2: Using Cutting Planes |
|
|
359 | (2) |
|
9.2 The Bridge Crane Design |
|
|
361 | (7) |
|
9.2.1 Obtaining Relevant Constraints |
|
|
364 | (1) |
|
9.2.2 A Numerical Example |
|
|
365 | (3) |
|
9.3 Network Constrained Unit Commitment |
|
|
368 | (6) |
|
|
368 | (1) |
|
|
369 | (1) |
|
9.3.3 Problem Formulation |
|
|
370 | (1) |
|
|
371 | (3) |
|
|
374 | (7) |
|
|
374 | (1) |
|
|
375 | (1) |
|
9.4.3 Problem Formulation |
|
|
376 | (1) |
|
|
377 | (4) |
|
9.5 Hydrothermal Coordination |
|
|
381 | (4) |
|
|
381 | (1) |
|
|
382 | (1) |
|
9.5.3 Problem Formulation |
|
|
383 | (1) |
|
|
384 | (1) |
|
9.6 Multiarea Optimal Power Flow |
|
|
385 | (4) |
|
|
385 | (1) |
|
|
386 | (1) |
|
9.6.3 Problem Formulation |
|
|
387 | (2) |
|
|
389 | (1) |
|
9.7 Sensitivity in Regression Models |
|
|
389 | (8) |
Part V Computer Codes |
|
|
A Some GAMS Implementations |
|
|
397 | (24) |
|
A.1 Dantzig-Wolfe Algorithm |
|
|
397 | (6) |
|
A.2 Benders Decomposition Algorithm |
|
|
403 | (4) |
|
A.3 GAMS Code for the Rubblemound Breakwater Example |
|
|
407 | (3) |
|
A.4 GAMS Code for the Wall Problem |
|
|
410 | (11) |
|
A.4.1 The Relaxation Method |
|
|
410 | (4) |
|
A.4.2 The Cutting Hyperplanes Method |
|
|
414 | |
Part VI Solution to Selected Exercises |
|
|
|
421 | (110) |
|
B.1 Exercises from Chapter 1 |
|
|
421 | (5) |
|
B.2 Exercises from Chapter 2 |
|
|
426 | (9) |
|
B.3 Exercises from Chapter 3 |
|
|
435 | (6) |
|
B.4 Exercises from Chapter 4 |
|
|
441 | (10) |
|
B.5 Exercises from Chapter 5 |
|
|
451 | (24) |
|
B.6 Exercises from Chapter 6 |
|
|
475 | (25) |
|
B.7 Exercises from Chapter 7 |
|
|
500 | (6) |
|
B.8 Exercises from Chapter 8 |
|
|
506 | (25) |
References |
|
531 | (6) |
Index |
|
537 | |